Publications

Journals

51.  Attarzadeh, N.; Lakshmi-Narayana, A.; Das, D.; Tan, S.; Shutthanandan, V.; Ramana, C. V., One-Step Synthesis and Operando Electrochemical Impedance Spectroscopic Characterization of Heterostructured MoP–Mo2N Electrocatalysts for Stable Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2024, 16, 6958–6970.

50. Nalam, P. G.; Das, D.; Shutthanandan, V.; Ramana, C. V., α-Quartz Phase-Stabilization, Surface Texturing and Tunable Optical Properties of Nanocrystalline GeO2 Films Made by Pulsed-Laser Deposition: Implications for Optical and Optoelectronic Applications, ACS Applied Optical Materials, 2023, 1, 1761-1776. 

49. Singh, B. K.; Das, D.; Gonzalez, C.; Ramana, C. V., Germanium Functionalized 3-D Microporous, Nanostructured Nickel-Nickel Oxides for Application in Asymmetric Supercapacitors, Energy Technology. https://doi.org/10.1002/ente.202300360.

48. Das, D.; Escobar, F. S.; Barton, D.J.; Tan, S.; Shutthanandan, V.; Devaraj, A.; Ramana, C. V., Rationally Engineered Vertically Aligned β-Ga2-xWxO3  Nanocomposites for Self-Biased Solar-Blind Ultraviolet Photo-Energy Detectors with Ultrafast Response, Advanced Materials Technologies, 2023, 8, 2300014. 

47. Sundin, E.; Das, D.; Kolluri, K.; Bhattacharya, P.; Ramana, C. V.; Li, C., Anisotropic two-photon excited photoluminescence of InGaN nanowires, ACS Applied Optical Materials, 2023, 1, 973–981.

46. Attarzadeh, N.; Das, D.; Chintalapalle, S. N.; Tan, S.; Shutthanandan, V.; Ramana, C. V., Nature-Inspired Design of Nano-Architecture-Aligned Ni5P4-Ni2P/NiS Arrays for Enhanced Electrocatalytic Activity of Hydrogen Evolution Reaction (HER), ACS Applied Materials & Interfaces, 2023, 15, 22036–22050.

45. Das, D.; Gutierrez, G.; Ramana, C.V., Raman Spectroscopic Characterization of Chemical Bonding and Phase Segregation in Tin (Sn)-Incorporated Ga2O3, ACS Omega, 2023, 8, 11709-11716.

44. Mudalagiriyappa, S.; Shashanka, H. M.; Saha, S.; Haritha, K.; Das, D.; Anantharamaiah, P. N.; Ramana, C. V., Effect of High Anisotropic Co2+  Substitution for Ni2+  on the Structural, Magnetic and Magnetostrictive Properties of NiFe2O4: Implications for Sensor Applications in Energy Systems, ACS Applied Materials & Interfaces, 2023, 15, 15691-15706.

43. Kharat, S. P.; Gaikwad, S. K.; Das, D.; Kambale, R. C.; Kolekar, Y. D.; Ramana, C. V., Enhanced Magnetoelectric Effect in Lead-Free Piezoelectric BaZr0.2Ti0.8O3-0.5 Ba0.7Ca0.3TiO3 and Fe-rich Magnetostrictive Co0.8Fe2.2-xDyxO4 Composites for Energy Harvesting Applications, Materials Science and Engineering B, 2023, 291, 116363.

42. Singh, B.K.; Das, D.; Attarzadeh, N.; Chintalapalle, S.; Ramana, C. V., Enhanced Electrochemical Performance of 3-D Microporous Nickel/Nickel Oxide Nanoflakes for Application in Supercapacitors. Nano Select, 2023, 4, 145.

41. Anantharamaiah, P. N.; Shashanka, H. M.; Srikari, S.; Das, D.; El-Gendy, A. A.; Ramana, C. V., Structural, Magnetic and Magnetostriction Properties of Flexible, Nanocrystalline CoFe2O4 Films Made by Chemical Processing. ACS Omega, 2022, 7, 43813–43819.

40. Panda, D.; Mantri, M.R.; Kumar, R.; Das, D.; Saha, R.; Chakrabarti, S., Novel approach for augmented carrier transfer and reduced Fermi level pinning effect in InAs surface quantum dots. Applied Surface Science, 2022, 607,154948.

39. Das, D.; Makeswaran, N.; Escobar, F.S.; Tan, S.; Ramana, C.V., Realization and Optimization of Enhanced and Spectral Selective Photoluminescence in Size and Phase Controlled Nanocrystalline Ga2O3 Films Made by Pulsed Laser Deposition. Thin Solid Films, 2022, 758, 139425.

38. Das, D.; Getahun, Y.; Escobar, F.S.; Romero, R.; El-Gendy, A.A.; Ramana, C.V., Unexpected Superparamagnetic Behavior in Nanocrystalline Niobium-Based High-Entropy Alloys. The Journal of Physical Chemistry C, 2022, 126, 14255–14263.

37. Shriram, S. R.;  Gourishetty, R.;  Panda, D.;  Das, D.;  Dongre, S.;  Saha, J.; Chakrabartia, S., Subsiding Strain-induced In-Ga Intermixing in InAs/InxGa1-xAs Sub-Monolayer Quantum Dots for Room Temperature Photodetectors. Infrared Physics & Technology, 2022, 121, 104047.

36. Ramana, C. V.;  Makeswaran, N.;  Zade, V.;  Das, D.;  Tan, S.;  Xu, S.; Beyerlein, I. J., Fabrication and Characterization of High-Quality Epitaxial Nanocolumnar Niobium Films with Abrupt Interfaces on YSZ(001). journal of physical Chemistry C, 2022, 126, 2098-2107.

35. Ramana, C. V.;  Das, D.;  Gutierrez, G.;  Manciu, F. S.; Shutthanandan, V., Microstructure, chemical inhomogeneity, and electronic properties of tin-incorporated Ga2O3 compounds. Journal of Materials Science, 2022, 57, 11170-11188.

34. Nalam, P. G.;  Das, D.;  Tan, S.; Ramana, C. V., Controlled Phase Stabilization Enabled Tunable Optical Properties of Nanocrystalline GeO2 Films. ACS Applied Electronic Materials, 2022, 4, 3115-3124.

33. Lee, J. T.;  Das, D.;  Davis, G. A.;  Hati, S.;  Ramana, C. V.; Sardar, R., Inorganic–Organic Interfacial Electronic Effects in Ligand-Passivated WO3–x Nanoplatelets Induce Tunable Plasmonic Properties for Smart Windows. ACS Applied Nano Materials, 2022.

32. Das, D.;  Escobar, F. S.;  Nalam, P. G.;  Bhattacharya, P.; Ramana, C. V., Excitation dependent and time resolved photoluminescence of β-Ga2O3, β-(Ga0.955Al0.045)2O3 and β-(Ga0.91In0.09)2O3 epitaxial layers grown by pulsed laser deposition. Journal of Luminescence, 2022, 248.

31. Makeswaran, N.;  Das, D.;  Zade, V.;  Gaurav, P.;  Shutthanandan, V.;  Tan, S.; Ramana, C. V., Size- and Phase-Controlled Nanometer-Thick β-Ga2O3 Films with Green Photoluminescence for Optoelectronic Applications. ACS Applied Nano Materials, 2021, 4, 3331-3338.

30. Gutierrez, G.;  Sundin, E. M.;  Nalam, P. G.;  Zade, V.;  Romero, R.;  Nair, A. N.;  Sreenivasan, S.;  Das, D.;  Li, C.; Ramana, C. V., Interfacial Phase Modulation-Induced Structural Distortion, Band Gap Reduction, and Nonlinear Optical Activity in Tin-Incorporated Ga2O3. The Journal of Physical Chemistry C, 2021, 125, 20468-20481.

29. Choudhary, S.;  Das, D.;  Saha, J.;  Panda, D.; Chakrabarti, S., Hybrid stranski-krastanov/submonolayer quantum dot heterostructure with type-II band alignment: an efficient way of near infrared photovoltaic energy conversion. Journal of Luminescence, 2021, 238, 118281.

28. Aiello, A.;  Das, D.; Bhattacharya, P., InGaN/GaN Quantum Dot Light-Emitting Diodes on Silicon with Coalesced GaN Nanowire Buffer Layer. ACS Applied Nano Materials, 2021, 4, 1825-1830.

27. Saha, J.;  Tongbram, B.;  Panda, D.;  Das, D.; Chakrabarti, S., Tuning the structural and optical characteristics of heterogeneously coupled InAs Submonolayer (SML) quantum dots grown on InAs Stranski-Krastanov (SK) quantum dots. Optical Materials, 2020, 109, 110292.

26. Mantri, M. R.;  Panda, D.;  Das, D.;  Mondal, S.;  Paul, S.;  Gazi, S. A.;  Kumar, R.;  Dongre, S.;  Pansare, A. V.; Chakrabarti, S., Improved carrier transfer in vertically coupled surface and buried InAs Stranski-Krastanov quantum dot system via ex-situ surface state passivation. Journal of Luminescence, 2020, 226, 117470.

25. Kumar, R.;  Panda, D.;  Saha, J.;  Tongbram, B.;  Das, D.;  Kumar, R.; Chakrabarti, S., Monolithic growth of GaAs/Al0.3Ga0.7As Multiple Quantum Well structure on Ge substrate with low defects: Theoretical and Experimental Correlation of the structural and optical properties. Journal of Physics D: Applied Physics, 2020, 53, 435301.

24. Kumar, R.;  Panda, D.;  Das, D.;  Chatterjee, A.;  Tongbram, B.;  Saha, J.;  Upadhyay, S.;  Kumar, R.;  Pal, S. K.; Chakrabarti, S., Realization of high-quality InGaAs/GaAs quantum dot growth on Ge substrate and improvement of optical property through ex-situ ion implantation. Journal of Luminescence, 2020, 223, 117208.

23. Dongre, S.;  Paul, S.;  Mondal, S.;  Panda, D.;  Shriram, S. R.;  Mantri, M. R.;  Gazi, S. A.;  Das, D.;  Kumar, R.; Tongbram, B., Optimization of vertical strain coupling in InAs/GaAs pip quantum dot infrared photodetectors with applied growth strategy. Journal of Luminescence, 2020, 226, 117499.

22. Dongre, S.;  Paul, S.;  Mondal, S.;  Kumar, R.;  Panda, D.;  Gazi, S. A.;  Das, D.;  Kumar, R.;  Shriram, S. R.; Mantri, M. R., In-Situ Tailoring of Vertically Coupled InAs pip Quantum-Dot Infrared Photodetectors: Toward Homogeneous Dot Size Distribution and Minimization of In–Ga Intermixing. ACS Applied Electronic Materials, 2020, 2, 1243-1253.

21. Deviprasad, V. P.;  Panda, D.;  Paul, S.;  Mondal, S.;  Saha, J.;  Das, D.;  Tongbram, B.;  Gupta, K. D.; Chakrabarti, S., Room temperature operation and low dark current of In0.15Ga0.85As/InAs/In0.15Ga0.85As dot-in-well short-wave infrared photodetector: Experimental and theoretical correlation. Superlattices Microstructures, 2020, 148, 106715.

20. Das, D.;  Aiello, A.;  Guo, W.; Bhattacharya, P., InGaN/GaN Quantum Dots on Silicon With Coalesced Nanowire Buffer Layers: A Potential Technology for Visible Silicon Photonics. IEEE Transactions on Nanotechnology, 2020, 19, 571-574.

19. Choudhary, S.;  Saha, J.;  Tongbram, B.;  Panda, D.;  Das, D.; Chakrabarti, S., A comprehensive analysis of strain profile in the heterogeneously coupled Stranski-Krastanov (SK) on Submonolayer (SML) quantum dot heterostructures. Journal of Alloys Compounds, 2020, 847, 156483.

18. Alam, M. J.;  Murkute, P.;  Sushama, S.;  Ghadi, H.;  Mondal, S.;  Paul, S.;  Das, D.;  Pandey, S. K.; Chakrabarti, S., Room-temperature ultraviolet-ozone annealing of ZnO and ZnMgO nanorods to attain enhanced optical properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 18777-18790.

17. Saha, J.;  Raut, P.;  Ramavath, R.;  Panda, D.;  Das, D.; Chakrabarti, S., Enhancing the performance of heterogeneously coupled InAs Stranski-Krastanov on submonolayer quantum dot heterostructures. Superlattices Microstructures, 2019, 135, 106260.

16. Saha, J.;  Panda, D.;  Tongbram, B.;  Das, D.;  Chavan, V.; Chakrabarti, S., Higher performance optoelectronic devices with In0.21Al0.21Ga0.58As/In0.15Ga0.85As capping of III-V quantum dots. Journal of Luminescence, 2019, 210, 75-82.

15. Saha, J.;  Das, D.;  Panda, D.;  Tongbram, B.;  Chatterjee, A.;  Liang, B.;  Gupta, K. D.;  Pal, S. K.; Chakrabarti, S., Broad tunability of emission wavelength by strain coupled InAs/GaAs1−xSbx quantum dot heterostructures. Journal of Applied Physics, 2019, 126, 154302.

14. Pansare, A. V.;  Shedge, A. A.;  Chhatre, S. Y.;  Das, D.;  Murkute, P.;  Pansare, S. V.;  Nagarkar, A. A.;  Patil, V. R.; Chakrabarti, S., Ag QDs employing black box synthetic strategy: Photocatalytic and biological behavior. Journal of Luminescence, 2019, 212, 133-140.

13. Panda, D.;  Saha, J.;  Das, D.;  Singh, S. M.;  Rawool, H.; Chakrabarti, S., Theoretical correlation and effect of annealing on the photoresponse of vertically strain-coupled In0.5Ga0.5As/GaAs quantum dot heterostructures. Journal of Applied Physics, 2019, 126, 125705.

12. Panda, D.;  Chatterjee, A.;  Saha, J.;  Das, D.;  Singh, S. M.;  Pal, S. K.; Chakrabarti, S., Enhanced performance of in (Ga) as QD based optoelectronic devices through improved interface quality between QD and matrix material. physica status solidi, 2019, 256, 1900138.

11. Deviprasad, V. P.;  Mondal, S.;  Paul, S.;  Tongbram, B.;  Das, D.;  Panda, D.; Chakrabarti, S., Incorporation of quaternary (In0.22Al0.22Ga0.56As) capping in pip QDIPs for efficient minimization of hole-assisted dark current. Infrared Physics & Technology, 2019, 103, 103079.

10. Deviprasad, V. P.;  Ghadi, H.;  Das, D.;  Panda, D.;  Rawool, H.;  Chavan, V.;  Tongbram, B.;  Patwari, J.;  Pal, S. K.; Chakrabarti, S., High performance short wave infrared photodetector using pip quantum dots (InAs/GaAs) validated with theoretically simulated model. Journal of Alloys Compounds, 2019, 804, 18-26.

9.   Deviprasad, V. P.;  Das, D.;  Tongbram, B.;  Panda, D.;  Paul, S.;  Mondal, S.; Chakrabarti, S., Spatial optimization of modulation doping in PIP QDIPs: towards achieving higher operating temperature. IEEE Transactions on Nanotechnology, 2019, 19, 247-254.

8.   Das, D.;  Saha, J.;  Panda, D.;  Tongbram, B.;  Raut, P. P.;  Ramavath, R.;  Mondal, S.;  Paul, S.; Chakrabarti, S., Vertically coupled hybrid InAs sub-monolayer on InAs Stranski–Krastanov quantum dot heterostructure: toward next generation broadband IR detection. IEEE Transactions on Nanotechnology, 2019, 19, 76-83.

7.   Chatterjee, A.;  Das, D.;  Patwari, J.;  Tongbram, B.;  Panda, D.;  Chakrabarti, S.; Pal, S. K., Ultrafast electronic spectroscopy on the coupling of Stranski-Krastanov and submonolayer quantum dots for potential application in near infrared light harvesting. Materials Research Express, 2019, 6, 085903.

6.   Saha, J.;  Panda, D.;  Das, D.;  Chavan, V.; Chakrabarti, S., Enhanced luminescence and optical performance through strain minimization in self-assembled InAs QDs using dual quaternary-ternary/ternary-quaternary capping. Journal of Luminescence, 2018, 197, 297-303.

5.   Ghadi, H.;  Patwari, J.;  Murkute, P.;  Das, D.;  Singh, P.;  Dubey, S.;  Bhatt, M.;  Chatterjee, A.;  Balgarkashi, A.; Pal, S., Optimizing dot-in-a-well infrared detector architecture for achieving high optical and device efficiency corroborated with theoretically simulated model. Journal of Alloys Compounds, 2018, 751, 337-348.

4.   Das, D.;  Panda, D.;  Tongbram, B.;  Saha, J.;  Deviprasad, V.;  Rawool, H.;  Singh, S.;  Chavan, V.; Chakrabarti, S., Improved near infrared energy harvesting through heterogeneously coupled SK on SML quantum dot heterostructure. Solar Energy Materials Solar Cells, 2018, 185, 549-557.

3.   Das, D.;  Panda, D.;  Tongbram, B.;  Saha, J.;  Chavan, V.; Chakrabarti, S., Optimization of hybrid InAs stranski krastanov and submonolayer quantum dot heterostructures and its effect on photovoltaic energy conversion efficiency in near infrared region. Solar Energy, 2018, 171, 64-72.

2.   Das, D.;  Ghadi, H.;  Tongbram, B.;  Singh, S.; Chakrabarti, S., The impact of confinement enhancement AlGaAs barrier on the optical and structural properties of InAs/InGaAs/GaAs submonolayer quantum dot heterostructures. Journal of Luminescence, 2017, 192, 277-282.

1.   Das, D.;  Ghadi, H.;  Sengupta, S.;  Ahmad, A.;  Manohar, A.; Chakrabarti, S., Optimization of the number of stacks in the submonolayer quantum dot heterostructure for infrared photodetectors. IEEE Transactions on Nanotechnology, 2016, 15, 214-219.

Conferences

47. Das, D.; Escobar, F. S.; Ramana, C. V., Vertically Aligned β–Ga2–XWXO3 Nanocomposites for Ultrafast Deep-UV Photodetectors, Electronic Materials Conference, MRS, 2023, V06.

46. Herbort, N. T.; Das, D.; Ramana, C. V., Synthesis and Characterization of Pulsed-Laser Deposited Ba(Fe0.7Ta0.3)O3–δ Thin Films, Electronic Materials Conference, MRS, 2023, PS37.

45. Escobar, F. S.; Das, D.; Ramana, C. V., Growth Optimization of Sn-Doped Gallium Oxide Thin Films on Sapphire for Deep UV Photodetectors with Ultrafast Response, Electronic Materials Conference, MRS, 2023, PS18.

44. Nalam, P. G.; Das, D.; Ramana, C. V., Fabrication and Characterization of High Quality Rutile-Phase GeO2 Films on MgO(100) for Application in Optoelectronics, Electronic Materials Conference, MRS, 2023, PS17. 

43. Getahun, Y.; Das, D.; Ramana, C. V.; El-Gendy, A. A., Preparation of nanoengineered ZVI@CIT core-shell with ultra-high magnetic saturation and tunable magnetic properties as candidates for treatment water, biomedical, and energy applications, Bulletin of the American Physical Society, APS March Meeting, 2023, K55.00004.

42. Nalam, P. G.; Das, D.; Ramana, C. V., Phase-Control Enabled Tunable Optical Properties of Nanostructured GeO2 Wide Band Gap Semiconductor Thin Films, Electronic Materials Conference, MRS, 2022, PS26.

41. Das, D.; Ramana, C. V., Tunable Optical Response by Anion Engineering in Crystalline Gallium Oxynitride Thin Film. Electronic Materials Conference, MRS, 2022, PS39.

40. Choudhary, S.;  Das, D.;  Upadhyay, S.;  Panda, D.;  Dutta, A.; Chakrabarti, S., High energy proton implantation effect on the emission wavelength and strain phenomenon of strain coupled InAs/In(Ga)As submonolayer (SML) QDs and Stranski-Krastanov (SK) QDs, Photonic and Phononic Properties of Engineered Nanostructures XII, SPIE, 2022, 12010, 77-82.

39. Dongre, S.;  Panda, D.;  Das, D.;  Gazi, S.;  Kumar, R.;  Biswas, M.;  Mandal, A.; Chakrabarti, S., Validation of the effects of growth parameter variations on the optical characteristics of InAs QD through Nextnano simulations, Nanoengineering: Fabrication, Properties, Optics, Thin Films, and Devices XVIII, SPIE, 2021, 11802, 118020W.

38. Das, D.; Ramana, C. V., Realization of Self-Assisted Growth of Nano-Columnar β-Ga2O3 Thin Film on Silicon Substrate, Electronic Materials Conference, MRS, 2021.

37. Das, D.;  Choudhury, S.;  Panda, D.;  Saha, J.; Chakrabarti, S., The electronic interaction between vertically coupled Stranski-Krastanov and submonolayer quantum dots: a detailed investigation of carrier transitions and correlation with improved NIR energy conversion efficiency, International Society for Optics and Photonics, SPIE, 2021, 11681, 1168112.

36. Mantri, M. R.;  Panda, D.;  Das, D.;  Kumar, R.;  Gazi, S. A.; Chakrabarti, S., Effect of vertical induced strain on growth kinetics of self-assembled epitaxially grown InAs surface quantum dots, Low-Dimensional Materials and Devices, SPIE, 2020, 11465, 104-110.

35. Dongre, S.;  Panda, D.;  Gazi, S. A.;  Das, D.;  Kumar, R.;  Pandey, N.;  Kumar, A.; Chakrabarti, S., Enhanced optical performance through growth strategy in coupled InAs PIP QDIPs, Quantum Dots, Nanostructures, and Quantum Materials: Growth, Characterization, and Modeling XVII, SPIE, 2020, 11291, 112910O.

34. Dongre, S.;  Panda, D.;  Gazi, S. A.;  Das, D.;  Kumar, R.;  Pandey, N.;  Kumar, A.; Chakrabarti, S., Submonolayer quantum dots in PIP configuration: study on effects of monolayer coverage and stacking variations, Quantum Dots, Nanostructures, and Quantum Materials: Growth, Characterization, and Modeling XVII, SPIE, 2020, 11291, 112910Q.

33. Dongre, S.;  Panda, D.;  Gazi, S. A.;  Das, D.;  Kumar, R.;  Kumar, A.;  Pandey, N.; Chakrabarti, S., Optimization of strain-coupled InAs QD layers in PiP infrared photodetector heterostructures, Quantum Dots, Nanostructures, and Quantum Materials: Growth, Characterization, and Modeling XVII, SPIE, 2020, 11291, 112910P.

32. Choudhary, S.;  Saha, J.;  Panda, D.;  Das, D.;  Dongre, S.; Chakrabarti, S., Investigations on heterogeneously coupled Submonolayer (SML) on Stranski-Krastanov (SK) quantum dot heterostructures with higher (0.1 ML/sec) and lower (0.05 ML/sec) growth rates, Quantum Dots, Nanostructures, and Quantum Materials: Growth, Characterization, and Modeling XVII, SPIE, 2020, 11291, 1129104.

31. Choudhary, S.;  Saha, J.;  Panda, D.;  Das, D.; Chakrabarti, S., A comparative analysis between heterogeneously coupled Stranski-Krastanov (SK) on Submonolayer (SML) and Submonolayer (SML) on Stranski-Krastanov (SK) quantum dot heterostructures, Quantum Dots, Nanostructures, and Quantum Materials: Growth, Characterization, and Modeling XVII, SPIE, 2020, 11291, 107-112.

30. Choudhary, S.;  Saha, J.;  Panda, D.;  Das, D.; Chakrabarti, S., Effect of ex-situ annealing on coupled hybrid InAs Stranski-Krastanov (SK) on Submonolayer (SML) Quantum Dot heterostructures with different spacer layer thickness, Low-Dimensional Materials and Devices, SPIE, 2020, 11465, 120-127.

29. Raut, P.;  Ramavath, R.;  Saha, J.;  Das, D.;  Panda, D.; Chakrabarti, S., Investigation of various capping layer configuration on heterogeneously coupled SML on SK quantum dots heterostructure, Low-Dimensional Materials and Devices, SPIE, 2019, 11085, 1108517.

28. Patel, A.;  Panda, D.;  Dongre, S.;  Gazi, S. A.;  Das, D.; Chakrabarti, S., A detailed investigation on the impact of variation in monolayer coverage on optical properties of InAs/GaAs multilayer quantum dot heterostructure, Low-Dimensional Materials and Devices, SPIE, 2019, 11085, 110851A.

27. Kumar, R.;  Panda, D.;  Das, D.;  Saha, J.;  Tongbram, B.; Chakrabarti, S., Influence of quaternary (In0.21Al0.21Ga0.58As) capping on the performance of InAs quantum dot infrared photodetector, Low-Dimensional Materials and Devices, SPIE, 2019, 11085, 110851K.

26. Kumar, R.;  Panda, D.;  Das, D.;  Chavan, V.;  Kumar, R.;  Chakrabarti, S.; Sheshadri, S., Investigation of carrier-confinement and dark current minimization in In0.5Ga0.5As QDIP with the incorporation of In0.21Al0.21Ga0.58As/GaAs capping, Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XVI, SPIE, 2019, 10929, 97-106.

25. Kumar, R.;  Panda, D.;  Das, D.;  Chavan, V.;  Kumar, R.;  Chakrabarti, S.; Sheshadri, S., Analysis of strain relaxation and dark current minimization in In (Ga) As QDIP with In0.15Ga0.85As/GaAs capping, Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XVI, SPIE, 2019, 10929, 89-96.

24. Kumar, R.;  Panda, D.;  Das, D.;  Chavan, V.;  Kumar, R.;  Chakrabarti, S.; Sheshadri, S., Effect of vertical coupling on the performance of mid-infrared InAs-QDIP, Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XVI, SPIE, 2019, 10929, 18-26.

23. Kumar, R.;  Panda, D.;  DAS, D.;  Chavan, V.;  Chakrabarti, S.; Sheshadri, S., Investigation of carrier-confinement and dark current minimization in In0.5Ga0.5As quantum dot infrared photodetector with the incorporation of In0.21Al0.21Ga0.58As/GaAs capping, Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XVI, SPIE, 2019, 10929, 1092910.

22. Kumar, R.;  Kumar, R.;  Panda, D.;  Saha, J.;  Tongbram, B.;  Das, D.;  Upadhyay, S.;  Chatterjee, A.;  Pal, S. K.; Chakrabarti, S., MBE-grown InGaAs/GaAs quantum-dots on Ge substrate: An idea towards optoelectronic integration on silicon, Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XVI, SPIE, 2019, 10929, 17-25.

21. Kumar, R.;  Kumar, R.;  Panda, D.;  Biswas, M.;  Upadhyay, S.;  Das, D.;  Zhao, S.;  Mi, Z.; Chakrabarti, S., Enhanced optical and structural properties of MBE-grown AlGaN nanowires on Si substrate by H-ion implantation and UV ozone treatment, Gallium Nitride Materials and Devices XIV, SPIE, 2019, 10918, 109180A.

20. Deviprasad, V. P.;  Ghadi, H.;  Das, D.;  Panda, D.;  Chavan, V.;  Raut, P.;  Aanand, A.; Chakrabarti, S., Influence of modulation doping on pip quantum-dots (InAs/GaAs)-based infrared detector performance, Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XVI, SPIE, 2019, 10929, 54-60.

19. Deviprasad, V. P.;  Ghadi, H.;  Das, D.;  Panda, D.;  Chavan, V.;  Raut, P.;  Aanand, A.; Chakrabarti, S., Improvement in operating temperature of InAs/GaAs quantum-dots-based photodetectors by varying position of localized carriers in active region, Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XVI, SPIE, 2019, 10929, 38-45.

18. Deviprasad, V. P.;  Ghadi, H.;  Das, D.;  Panda, D.; Chakrabarti, S., Impact of ultra-thin quaternary capping on modulation doped pip quantum dots (InAs/GaAs) based infrared detector, Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XVI, SPIE, 2019, 10929, 107-113.

17. Deviprasad, V. P.;  Ghadi, H.;  Das, D.;  Panda, D.; Chakrabarti, S., Impact of ternary capping on pip InAs/GaAs quantum-dot infrared photodetectors, Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XVI, SPIE, 2019, 10929, 114-120.

16. Das, D.;  Mantri, M. R.;  Panda, D.;  Paul, S.;  Mondal, S.;  Pansare, A. V.; Chakrabarti, S., Optical and structural investigation of ex-situ passivated strain coupled InAs surface quantum dots, Low-Dimensional Materials and Devices, SPIE, 2019, 11085, 110851N.

15. Das, D.;  Mantri, M. R.;  Panda, D.;  Paul, S.;  Mondal, S.;  Pansare, A. V.; Chakrabarti, S., The enhancement in luminescence property of chemically passivated near surface quantum well and quantum dots, Low-Dimensional Materials and Devices, SPIE, 2019, 11085, 110851O.

14. Dahale, R. A.;  Aanand, A.;  Gazi, S. A.;  Dongre, S.;  Paul, S.;  Mondal, S.;  Agarwal, A.;  Das, D.;  Panda, D.; Chakrabarti, S., The effect of growth rate variation on structural and optical properties of self assembled InAs quantum dots, Low-Dimensional Materials and Devices, SPIE, 2019, 11085, 1108519.

13. Chakrabarti, S.;  Panda, D.; Das, D., Impact of various in-situ and ex-situ techniques on the optical, structural, and device performance of In(Ga)As/GaAs quantum dot based heterostructures and devices (Conference Presentation), Low-Dimensional Materials and Devices, SPIE, 2019, 11085, 1108508.

12. Agarwal, A.;  Aanand, A.;  Gazi, S. A.;  Dongre, S.;  Paul, S.;  Mondal, S.;  Dahale, R. A.;  Das, D.;  Panda, D.; Chakrabarti, S., The effects of V-III ratio on structural and optical properties of self-assembled InAs quantum dots, Low-Dimensional Materials and Devices, SPIE, 2019, 11085, 1108518.

11. Aanand, A.;  Dongre, S.;  Gazi, S. A.;  Das, D.;  Panda, D.; Chakrabarti, S., Effect of substrate temperature variation on the structural and optical properties of self assembled InAs quantum dots, Low-Dimensional Materials and Devices, SPIE, 2019, 11085, 110851D.

10. Upadhyay, S.;  Panda, D.;  Das, D.;  Subrahmanyam, N.;  Bhagwat, P.; Chakrabarti, S., Improvement in NEDT characteristics of InAs/GaAs quantum dot based 320x256 focal plane array implanted with hydrogen ions, Infrared Technology and Applications XLIV, SPIE, 2018, 10624, 1062423.

9.   Saha, J.;  Panda, D.;  Das, D.;  Chavan, V.; Chakrabarti, S., Effect of various capping layer on the hydrostatic and biaxial strain of InAs QDs in x (100) and z (001) direction, Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XV, SPIE, 2018, 10543, 105430U.

8.   Saha, J.;  Panda, D.;  Das, D.; Chakrabarti, S., Effect of InGaAs as a strain reducing layer on molecular beam epitaxy grown InAs quantum dots, International Conference on Microwave and Photonics (ICMAP), IEEE, 2018, 1-2.

7.   Deviprasad, V. P.;  Ghadi, H.;  Das, D.;  Panda, D.;  Rawool, H.; Chakrabarti, S., Short wave infrared photodetector using pip quantum dots (InAs/GaAs) for high temperature operation, Infrared Technology and Applications XLIV, SPIE, 2018, 10624, 106241Q.

6.   Das, D.;  Panda, D.;  Saha, J.;  Chavan, V.; Chakrabarti, S., Heterogeneously coupled InAs Stranski-Krastanov and submonolayer quantum dot infrared photodetector for next-generation IR imaging, Infrared Technology and Applications XLIV, SPIE, 2018, 10624, 106241S.

5.   Das, D.;  Panda, D.;  Rawool, H.;  Chavan, V.; Chakrabarti, S., The coupling between two heterogeneous InAs quantum dot families and its effect into optical properties, MRS Spring Meeting, MRS Advances, 2017, 2, 2337-2341.

4.   Das, D.;  Ghadi, H.;  Singh, S. M.; Chakrabarti, S., Confinement barrier induced enhancement in thermal stability of the optical response of InAs/InGaAs/GaAs submonolayer quantum dot heterostuctures, MRS Spring Meeting, MRS Advances, 2017, 2, 2349-2354.

3.   Balgarkashi, A.;  Biswas, M.;  Singh, S.;  Das, D.;  Shinde, N.;  Makkar, R.;  Bhatnagar, A.; Chakrabarti, S., Low-temperature photoluminescence studies in epitaxially-grown GaAsN/InAs/GaAsN quantum-dot-in-well structures emitting at 1.31 um, Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XIV, SPIE, 2017, 10114, 43-49.

2.   Balgarkashi, A.;  Biswas, M.;  Singh, S.;  Das, D.;  Bhatnagar, A.;  Makkar, R.;  Shinde, N.; Chakrabarti, S., A low temperature investigation of the optical properties of coupled InAs quantum dots with GaAsN/GaAs spacers, Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XIV, SPIE, 2017, 10114, 133-140.

1.   Tongbram, B.;  Sehara, N.;  Singhal, J.;  Das, D.;  Panda, D. P.; Chakrabarti, S., Diffusion impact on thermal stability in self-assembled bilayer InAs/GaAs quantum dots (QDs), Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XIII, SPIE, 2016, 9758, 108-116.